Ternary eutectic dendrites: Pattern formation and scaling properties.

نویسندگان

  • László Rátkai
  • Attila Szállás
  • Tamás Pusztai
  • Tetsuo Mohri
  • László Gránásy
چکیده

Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling theory of two-phase dendritic growth in undercooled ternary melts.

Two-phase dendrites are needlelike crystals with a eutectic internal structure growing during solidification of ternary alloys. We present a scaling theory of these objects based on Ivantsov's theory of dendritic growth and the Jackson-Hunt theory of eutectic growth. The additional introduction of the relationship ρ∼λ (ρ: dendrite tip radius; λ: eutectic interphase spacing) suggested by recent ...

متن کامل

Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction

Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of...

متن کامل

Linear and nonlinear convection in solidifying ternary alloys

In this paper we consider buoyancy-driven flow and directional solidification of a ternary alloy in two dimensions. A steady flow can be established by forcing liquid downward at an average rate V through a temperature gradient that is fixed in the laboratory frame of reference and spans both the eutectic and liquidus temperature of the material being solidified. Our results include both a line...

متن کامل

Effects of a Third Element on Microstructure and Mechanical Properties of Eutectic Sn–Bi Solder

The effects of a third element, namely silver, copper, zinc, or antimony, on the microstructure and mechanical properties of eutectic tin-bismuth (Sn–Bi) solder were investigated. The investigation showed that, except for zinc, the addition of a trace amount of the third element improves the ductility of the Sn–Bi solder owing to the formation of a fine, homogeneous ternary eutectic microstruct...

متن کامل

Plastic deformation of directionally solidified ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites

The high-temperature mechanical properties of directionally solidified (DS) ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites with a script lamellar structure have been investigated as a function of loading axis orientation and growth rate in a temperature range from 900 to 1500°C. These DS ingots are plastically deformed above 1000 and 1100 °C when the compression axis orienta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 142 15  شماره 

صفحات  -

تاریخ انتشار 2015